Broad-spectrum antibiotics are widely used with patients in intensive care units (ICUs), many of whom develop hospital-acquired infections with Pseudomonas aeruginosa. Although preceding antimicrobial therapy is known as a major risk factor for P. aeruginosa–induced pneumonia, the underlying mechanisms remain incompletely understood. Here we demonstrate that depletion of the resident microbiota by broad-spectrum antibiotic treatment inhibited TLR-dependent production of a proliferation-inducing ligand (APRIL), resulting in a secondary IgA deficiency in the lung in mice and human ICU patients. Microbiota-dependent local IgA contributed to early antibacterial defense against P. aeruginosa. Consequently, P. aeruginosa–binding IgA purified from lamina propria culture or IgA hybridomas enhanced resistance of antibiotic-treated mice to P. aeruginosa infection after transnasal substitute. Our study provides a mechanistic explanation for the well-documented risk of P. aeruginosa infection following antimicrobial therapy, and we propose local administration of IgA as a novel prophylactic strategy.


Oliver H. Robak, Markus M. Heimesaat, Andrey A. Kruglov, Sandra Prepens, Justus Ninnemann, Birgitt Gutbier, Katrin Reppe, Hubertus Hochrein, Mark Suter, Carsten J. Kirschning, Veena Marathe, Jan Buer, Mathias W. Hornef, Markus Schnare, Pascal Schneider, Martin Witzenrath, Stefan Bereswill, Ulrich Steinhoff, Norbert Suttorp, Leif E. Sander, Catherine Chaput, Bastian Opitz


Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.