Review

Abstract

Autoimmune and inflammatory uveitis are a group of potentially blinding intraocular inflammatory diseases that arise without a known infectious trigger and are often associated with immunological responses to unique retinal proteins. In the United States, about 10% of the cases of severe visual handicap are attributed to this group of disorders. As I discuss here, experimental models of ocular autoimmunity targeting retinal proteins have brought about a better understanding of the basic immunological mechanisms involved in the pathogenesis of uveitis and are serving as templates for the development of novel therapies.

Authors

Rachel R. Caspi

×

Abstract

Retinopathy of prematurity (ROP) is a major complication of preterm birth. It encompasses a spectrum of pathologies that affect vision, from mild disease that resolves spontaneously to severe disease that causes retinal detachment and subsequent blindness. The pathologies are characterized by an arrest in normal retinal vascular development associated with microvascular degeneration. The resulting ischemia and retinal hypoxia lead to excessive abnormal compensatory blood vessel growth. However, this neovascularization can lead to fibrous scar formation and culminate in retinal detachment. Present therapeutic modalities to limit the adverse consequences of aberrant neovascularization are invasive and/or tissue-destructive. In this Review, we discuss current concepts on retinal microvascular degeneration, neovascularization, and available treatments, as well as present future perspectives toward more profound elucidation of the pathogenesis of ROP.

Authors

Przemyslaw Sapieha, Jean-Sebastien Joyal, José Carlos Rivera, Elsa Kermorvant-Duchemin, Florian Sennlaub, Pierre Hardy, Pierre Lachapelle, Sylvain Chemtob

×

Abstract

Through a series of complex transformations, the pixel-like input to the retina is converted into rich visual perceptions that constitute an integral part of visual recognition. Multiple visual problems arise due to damage or developmental abnormalities in the cortex of the brain. Here, we provide an overview of how visual information is processed along the ventral visual cortex in the human brain. We discuss how neurophysiological recordings in macaque monkeys and in humans can help us understand the computations performed by visual cortex.

Authors

Julie Blumberg, Gabriel Kreiman

×

Abstract

Dramatic advances in the field of stem cell research have raised the possibility of using these cells to treat a variety of diseases. The eye is an excellent target organ for such cell-based therapeutics due to its ready accessibility, the prevalence of vasculo- and neurodegenerative diseases affecting vision, and the availability of animal models to demonstrate proof of concept. In fact, stem cell therapies have already been applied to the treatment of disease affecting the ocular surface, leading to preservation of vision. Diseases in the back of the eye, such as macular degeneration, diabetic retinopathy, and inherited retinal degenerations, present greater challenges, but rapidly emerging stem cell technologies hold the promise of autologous grafts to stabilize vision loss through cellular replacement or paracrine rescue effects.

Authors

Valentina Marchetti, Tim U. Krohne, David F. Friedlander, Martin Friedlander

×

Abstract

Glaucoma, a leading cause of blindness worldwide, is characterized by progressive optic nerve damage, usually associated with intraocular pressure. Although the clinical progression of the disease is well defined, the molecular events responsible for glaucoma are currently poorly understood and current therapeutic strategies are not curative. This review summarizes the human genetics and genomic approaches that have shed light on the complex inheritance of glaucoma genes and the potential for gene-based and cellular therapies that this research makes possible.

Authors

Bao Jian Fan, Janey L. Wiggs

×

Abstract

The BCR-ABL1 oncoprotein transforms pluripotent HSCs and initiates chronic myeloid leukemia (CML). Patients with early phase (also known as chronic phase [CP]) disease usually respond to treatment with ABL tyrosine kinase inhibitors (TKIs), although some patients who respond initially later become resistant. In most patients, TKIs reduce the leukemia cell load substantially, but the cells from which the leukemia cells are derived during CP (so-called leukemia stem cells [LSCs]) are intrinsically insensitive to TKIs and survive long term. LSCs or their progeny can acquire additional genetic and/or epigenetic changes that cause the leukemia to transform from CP to a more advanced phase, which has been subclassified as either accelerated phase or blastic phase disease. The latter responds poorly to treatment and is usually fatal. Here, we discuss what is known about the molecular mechanisms leading to blastic transformation of CML and propose some novel therapeutic approaches.

Authors

Danilo Perrotti, Catriona Jamieson, John Goldman, Tomasz Skorski

×

Abstract

Uric acid is the metabolic end product of purine metabolism in humans. It has antioxidant properties that may be protective but can also be pro-oxidant, depending on its chemical microenvironment. Hyperuricemia predisposes to disease through the formation of urate crystals that cause gout, but hyperuricemia, independent of crystal formation, has also been linked with hypertension, atherosclerosis, insulin resistance, and diabetes. We discuss here the biology of urate metabolism and its role in disease. We also cover the genetics of urate transport, including URAT1, and recent studies identifying SLC2A9, which encodes the glucose transporter family isoform Glut9, as a major determinant of plasma uric acid levels and of gout development.

Authors

Alexander So, Bernard Thorens

×

Abstract

The CNS is an immune-privileged environment, yet the local control of multiple pathogens is dependent on the ability of immune cells to access and operate within this site. However, inflammation of the distinct anatomical sites (i.e., meninges, cerebrospinal fluid, and parenchyma) associated with the CNS can also be deleterious. Therefore, control of lymphocyte entry and migration within the brain is vital to regulate protective and pathological responses. In this review, several recent advances are highlighted that provide new insights into the processes that regulate leukocyte access to, and movement within, the brain.

Authors

Emma H. Wilson, Wolfgang Weninger, Christopher A. Hunter

×

Abstract

The linkage of Kaposi sarcoma (KS) to infection by a novel human herpesvirus (Kaposi sarcoma–associated herpesvirus [KSHV]) is one of the great successes of contemporary biomedical research and was achieved by using advanced genomic technologies in a manner informed by a nuanced understanding of epidemiology and clinical investigation. Ongoing efforts to understand the molecular mechanisms by which KSHV infection predisposes to KS continue to be powerfully influenced by insights emanating from the clinic. Here, recent developments in KS pathogenesis are reviewed, with particular emphasis on clinical, pathologic, and molecular observations that highlight the many differences between this process and tumorigenesis by other oncogenic viruses.

Authors

Don Ganem

×

Abstract

Spermatogenesis in adult mammals is highly organized, with the goal being continual sperm production. Vertebrate testes are arranged into recurring cellular associations that vary with time and distance along the tubule. These changes over time and distance are designated the cycle of the seminiferous epithelium and the spermatogenic wave, respectively. In this Review, we briefly outline the roles that follicle-stimulating hormone (FSH) and testosterone play in regulating spermatogenesis and describe our current understanding of how vitamin A regulates germ cell differentiation and how it may lead to the generation of both the cycle of the seminiferous epithelium and the spermatogenic wave.

Authors

Cathryn A. Hogarth, Michael D. Griswold

×

No posts were found with this tag.