nt #	Age	Gender	Tumor size	Resected pituitary adenoma immunochemistry	Serum GH (normal < 2ng/ml)		Additional treatments
Patie					Pre- surgery	Post- surgery	
1	55	F	Macro	GH(+), ACTH(partial+), FSH(±), LH(-), PRL(-), TSH(-), P53(-), Ki-67<1%	7.6	0.9	
2	35	М	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 1%	33.0	22.1	Octreotide and surgery 1 year prior
3	42	М	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 <1%	5.4	0.6	Gamma knife 1 year prior
4	27	М	Micro	GH(+), PRL(partial+), ACTH (partial+), LH (partial+), TSH(-), P53(-), Ki-67 2%	14.3	1.3	
5	51	F	Macro	GH(+), PRL(-), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 2%	5.0	1.3	
6	42	F	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 3%	5.2	0.9	Bromocriptine
7	22	F	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 <1%	65.9	74.7	Octreotide before surgery
8	41	F	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 2%	59.7	4.8	
9	60	М	Macro	GH(+), PRL(+), FSH(scattered +), ACTH(-), LH(-), TSH(-), P53(-), Ki-67 1%	7.1	2.1	
10	37	М	Macro	GH(+), PRL(-), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 <1%	8.5	0.4	Octreotide before surgery
11	56	F	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 1%	31.4	8.6	
12	24	М	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 5%	84.5	1.6	

Supplemental Table 1. Twenty-one acromegaly patients

13	56	F	Macro	GH(+), PRL(few+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 Negative	3.5	1.3	Octreotide before surgery
14	59	F	Macro	GH(+), PRL(-), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 2%	42.7	1.9	
15	37	М	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 2%	7.7	1.3	
16	41	М	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 <1%	24.5	1.4	
17	44	F	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 3%	25.0	0.8	
18	36	М	Micro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 3%	6.3	1.9	
19	24	F	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 <1%	292.0	8.8	Octreotide before surgery
20	36	М	Macro	GH(+), PRL(partial+), ACTH(-), FSH(-), LH(-), TSH(-), P53(-), Ki-67 2%	33.3	6.3	
21	41	М	Macro	GH(+), PRL(+), ACTH(-), FSH(-), LH(-), TSH(partial+), P53(+), Ki-67 1%	8.3	1.0	

M: male; F: female; Micro: micro-adenoma, tumor largest diameter < 10 mm; Macro: macro-adenoma, tumor largest diameter > 10 mm.

Supplementary Figure 1. STAT3-DN or *Stat3* shRNA expression attenuates GH in GH3 cells as assessed by Western blotting. (A) Gh expression is decreased in STAT3-DN stable transfectants. STAT3-DN stable cells were sorted to ensure strong STAT3-DN expression. GH3: non-transfected GH3 cell lysate. (B) GH expression is decreased in Lenti-STAT3-DN infected cells. (C) GH expression is decreased with attenuating endogenous STAT3 by lenti-shSTAT3 infection. Infected cells were harvested 6 days after infection and proteins extracted. Experiments were repeated 2 or 3 times and figures A-C show representative results.

Supplementary Figure 2. Expression of STAT1, 3, 5 and GH in S3I-201 treated GH3 and GC cells as assessed by Western blotting. (A) GH3 cells were treated with increasing amounts of S3I-201 (0-125 μ M) for 24 h, and STAT3, 5 and GH expression assessed. (B) GH3 cells were treated with increasing amounts of S3I-201 (0-125 μ M) for 21 h, and STAT1, 3 and GH expression assessed. (C) GC cells were treated with increasing amounts of S3I-201 (0-125 μ M) for 21 h, and STAT1, 3 and GH expression assessed. (C) GC cells were treated with increasing amounts of S3I-201 (0-125 μ M) for 21 h, and STAT1, 3 and GH expression assessed. (C) GC cells were treated with increasing amounts of S3I-201 (0-125 μ M) for 21 h, and STAT1, 3 and GH expression assessed. (C) GC cells were treated with increasing amounts of S3I-201 (0-125 μ M) for 21 h, and STAT1, 3 and GH expression assessed. (C) GC cells were treated with increasing amounts of S3I-201 (0-125 μ M) for 21 h, and STAT1, 3 and GH expression assessed. (C) GC cells were treated with increasing amounts of S3I-201 (0-125 μ M) for 21 h, and STAT1, 3 and GH expression assessed. (C) GC cells were treated with increasing amounts of S3I-201 (0-125 μ M) for 21 h, and STAT1, 3, 5 and GH expression assessed. Experiments were repeated 2 times and figures show representative results.

Supplementary Figure 3. GH mRNA, protein expression and secretion in primary cell cultures derived from 21 human somatotroph adenomas. Cells were treated by S3I-201at 0-150 μ M for 48 hours. mRNA expression were assessed by real-time PCR in triplicate wells, data shown as mean \pm SD. *RPL13A* and *18S* were used as internal controls. GH protein expression was detected by Western blotting using total protein as normalized control. Medium GH concentrations were measured from 4 parallel wells, data presented as mean \pm SE. Western blot sample of P2 at 150 μ M, and all samples of P13 at 50 μ M were not available.

Supplementary Figure 4. STAT3 phosphorylation and expression in primary cell cultures derived from 21 human somatotroph adenomas. Cells were treated by S3I-201at 0-150 μ M for 48 hours. Protein expression was assessed by Western blotting, using total protein as normalized controls. Samples of P2 at 150 μ M and P13 at 50 μ M were not available. STAT3 phosphorylation of P16, P18, P20 and P21 were not detectable.