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Cardiac ischemia-reperfusion (I-R) injury occurs upon prompt restoration of blood flow to the ischemic myocardium after
an acute myocardial infarction. Interestingly, many of the features of I-R injury are related to impaired mitochondrial
signaling and mitochondrial dysfunction. Restoring cardiac energy bioavailability and reduction-oxidation (redox) signaling
are therefore important in recovery after I-R injury. In this issue of the JCI, Yoshioka and colleagues describe an important
and unexpected role for thioredoxin-interacting protein (TXNIP) in the control of mitochondrial respiration and cell energy
metabolism. Their findings could open the door for development of TXNIP-targeted therapeutic approaches for the
treatment of cardiac I-R injury.
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Cardiac ischemia-reperfusion (I-R) injury occurs upon prompt restora-
tion of blood flow to the ischemic myocardium after an acute myocardial 
infarction. Interestingly, many of the features of I-R injury are related to 
impaired mitochondrial signaling and mitochondrial dysfunction. Restor-
ing cardiac energy bioavailability and reduction-oxidation (redox) signal-
ing are therefore important in recovery after I-R injury. In this issue of the 
JCI, Yoshioka and colleagues describe an important and unexpected role 
for thioredoxin-interacting protein (TXNIP) in the control of mitochon-
drial respiration and cell energy metabolism. Their findings could open 
the door for development of TXNIP-targeted therapeutic approaches for 
the treatment of cardiac I-R injury.

After acute myocardial infarction, 
prompt restoration of blood flow to the 
ischemic myocardium — through the use 
of thrombolytic therapy or primary per-
cutaneous coronary intervention — limits 
infarct size and reduces mortality. How-
ever, the restoration of blood flow can 
result in additional myocardial damage, 
a phenomenon referred to as ischemia-
reperfusion (I-R) injury. Despite many 
promising preclinical approaches to 
improve cardiac function after I-R, their 
clinical translation has thus far yielded 
little therapeutic benefit (1). Emerging 
data suggest that thioredoxin-interact-
ing protein (TXNIP) could provide a new 
candidate therapeutic target (2, 3), and a 
clear rationale for this is now provided 
by the work of Yoshioka et al. reported in 
this issue of the JCI (4).

TXNIP controls energy bioavailability 
by altering mitochondrial redox  
state and respiration
Many of the features of I-R injury are relat-
ed to mitochondrial dysfunction manifest 
by the uncoupling of oxidation-phosphor-
ylation (OXPHOS) that leads to decreased 
ATP production and increased ROS gen-
eration (5). Restoring cardiac energy bio-
availability and homeostatic reduction-
oxidation (redox) signaling are therefore 
important in recovery from I-R. Conse-
quently, detailed understanding of the reg-
ulation of mitochondrial homeostasis and 
cellular bioenergetics is key to designing 
therapeutic approaches to improve cardiac 
function after I-R.

It has recently become clear that TXNIP 
plays a critical role in regulating mito-
chondrial homeostasis and cellular bio-
energetics (6–8). TXNIP is the endog-
enous inhibitor of the two isoforms of 
thioredoxin, cytosolic thioredoxin (TRX1) 
and mitochondrial thioredoxin (TRX2), 
which are key regulators of cellular redox 

state insert (9). Because TXNIP inhibits 
TRX2 in the mitochondria, and mito-
chondrial function is critical to recovery 
from I-R injury, it is logical to believe 
that decreasing TXNIP expression should 
improve mitochondrial function and 
recovery from I-R injury.

This hypothesis is supported by recent 
data showing that TXNIP has redox-
dependent effects on mitochondria (Fig-
ure 1 and refs. 7, 8). One set of data indi-
cates that TXNIP-deficient mice exhibit 
increased glycolysis and Akt signaling 
associated with impaired mitochondrial 
fuel oxidation and loss of phosphatase and 
tensin homolog (PTEN) activity (7). Mech-
anistically, the PTEN active site contains 
two critical cysteine residues (Cys-71 and 
Cys-124) that must be in the reduced form 
for proper catalytic activity. Alterations in 
the redox state of those residues are linked 
to the mitochondrial respiration rate 
and to the ability of TRX to interact with 
PTEN, which is regulated by TXNIP. The 
second set of data indicates that TXNIP 
translocates from the nucleus to the mito-
chondria in response to changes in cellu-
lar redox state and targets TRX2 (8). As 
a result, TRX2 activity decreases, which 
induces dissociation of TRX2 from apop-
tosis signal regulating kinase 1 (ASK1) 
and release of its inhibitory effect. ASK1 
dissociation from TRX2 leads to increased 
ASK1 activity and subsequent induction of 
mitochondria-mediated apoptotic signal-
ing, including cytochrome c release and 
caspase-3 activation.
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An exciting and surprising  
insight into TXNIP control  
of mitochondria function
Yoshioka et al. definitively prove the hypoth-
esis that decreasing TXNIP expression 
improves recovery after I-R injury (4). Using 
mice in which Txnip was deleted in every cell, 
as well as those in which the gene was delet-
ed in a cardiac-specific manner, the authors 
showed that after I-R injury, left ventricular 
function was improved in TXNIP-deficient 
versus wild-type mice. Unexpectedly, the 
improvement in left ventricular function was 
accompanied by a decrease, not an increase, 
in mitochondrial respiratory function. Yosh-
ioka et al. went on to determine the mecha-
nism underlying the beneficial effect of 
TXNIP deletion by several approaches. First, 
they performed bioinformatics analyses of 
the transcriptome and proteome in TXNIP-
deficient mouse hearts to identify pathways 
altered by Txnip deletion. The mRNA expres-
sion approach revealed 390 genes regulated 
by TXNIP, of which 306 were downregulat-
ed. In addition, they showed an altered gene 
expression that primarily led to decreased 
expression of proteins important for ener-
gy metabolism. More specifically, proteins 
that are involved in OXPHOS or fatty acid/
carbohydrate metabolism associated with 
metabolic pathways in the mitochondria. 
The proteomics approach revealed 21 pro-
teins that were differentially regulated, of 
which 13 had described cellular functions, 
and all were decreased in TXNIP-deficient 
mouse hearts. Among the 13 proteins, 12 
were related to mitochondrial metabolism, 
which supports the notion that TXNIP is 
a key regulator of mitochondrial function 
in the heart.

Second, Yoshioka et al. used skinned 
cardiac myocyte fibers and isolated mito-
chondria to show that deletion of Txnip 
in mice was associated with reduced mito-
chondrial function. This was not due to a 

loss of respiratory complexes, but resulted 
from a functional loss of ADP-stimulated 
respiration. There was also no change in 
mitochondrial permeability transition 
pore opening. Third, the authors showed 
that, surprisingly, there was no change in 
the number of mitochondria or in their 
structure. However, electron microscopy 
showed large perimitochondrial lipid drop-
lets and matrix granules in the mitochon-
dria of TXNIP-deficient hearts, suggestive 
of altered fatty acid and lipid metabolism. 
Fourth, they measured the activity of TRX1 
and TRX2. Although there was no change 
in TRX1 activity, there was a substantial 
increase in TRX2 activity and a decrease in 
ROS generation in TXNIP-deficient mice 
that was apparent after I-R injury. Fifth, 
they determined cellular ATP content after 
I-R, which was 2-fold greater in TXNIP-KO 
hearts. This was due to a shift from aero-
bic to anaerobic metabolism, as shown by 
blocking glycolysis. Finally, the authors 
studied the role of the pyruvate dehydro-
genase complex, which regulates glycolytic 

flux relative to mitochondrial respiration. 
They found that TXNIP binds to pyruvate 
dehydrogenase (PDH), specifically pyruvate 
dehydrogenase E1 component, subunit α 
(Figure 1). In TXNIP-deficient hearts, PDH 
activity was inhibited, and there was a shift 
in the use of glycolytically derived pyruvate 
away from its metabolism in mitochondria 
toward cytosolic lactate production and 
ATP generation.

In summary, Yoshioka et al. demonstrat-
ed that TXNIP acts as a metabolic switch 
to enhance ATP production by anaerobic 
pathways via its ability to inhibit mito-
chondrial respiration (4). Moreover, TXNIP 
was shown to mediate this function by 
both decreasing expression of mitochon-
drial OXPHOS proteins and by redirecting 
pyruvate away from mitochondria.

Exciting findings, further complexity 
in TXNIP biology
A complexity in interpreting the results 
of Yoshioka et al. is the fact that although 
TXNIP regulates mitochondrial respira-

Table 1
Functions of TXNIP in distinct subcellular compartments

Function/effect	 Reference
Nucleus
Induces growth arrest	 11
Regulates expression of hypertrophic genes	 12
Induces expression of inflammatory genes	 21
Cytosol
Inhibits TRX1	 2, 22
Degrades HIF1a	 13
Activates ASK1	 23
Mitochondria
Inhibits TRX2 and activates ASK1	 8
Inhibits PTEN	 7
Regulates aerobic/anaerobic respiration	 4
Plasma membrane
Regulates tyrosine kinase receptor activation	 14
Facilitates cargo transport	 15

 

Figure 1
TXNIP regulates mitochondrial function via several pathways. First, 
TXNIP regulates fuel use in the mitochondria via inhibition of TRX2 
and alteration of PTEN-Akt signaling. Second, TXNIP translocates to 
the mitochondria in response to changes in cellular redox state, result-
ing in inhibition of TRX2 and subsequent activation of ASK1 that leads 
to opening of the mitochondrial permeability transition pore. Third, as 
shown by Yoshioka et al., TXNIP interacts with PDH and acts as a 
metabolic switch between aerobic and anaerobic metabolism (4). Last, 
TXNIP expression is closely regulated by the MondoA:MLX transcrip-
tion factor, which is activated by glucose uptake, glycolytic intermedi-
ates generated by the mitochondria, and lactate.
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tion and energy production, TXNIP expres-
sion itself is regulated by glucose and gly-
colytic intermediates (6). It is therefore 
possible that drugs that inhibit TXNIP 
expression or function may paradoxically 
stimulate pathways that increase TXNIP 
expression (Figure 1). In addition, TXNIP 
appears to have many functions in subcel-
lular compartments besides mitochondria 
(Table 1 and reviewed in ref. 10). First, in 
the nucleus, TXNIP acts as a growth sup-
pressor via interaction and inhibition of 
Jun activation domain–binding protein 1 
(JAB1) (11). TXNIP has also been shown 
to mediate TRX1 translocation into the 
nucleus, resulting in the regulation of 
cardiac hypertrophy (12). Second, TXNIP 
shuttles HIF1a from the nucleus to the 
cytosol, targeting it for proteasomal deg-
radation (13). Third, the TXNIP-TRX1 
complex has previously been shown to 
translocate to the plasma membrane to 
promote activation of VEGFR2, resulting 
in endothelial cell survival and migra-
tion (14). Finally, TXNIP can facilitate the 
transport of proteins to the plasma mem-
brane, an effect that may be important for 
cell signaling (15). These findings suggest 
multiple regulatory mechanisms for both 
TXNIP expression and TXNIP subcellular 
location, which together determine the 
overall function of TXNIP.

Starting to unfold the complexity: 
TXNIP as an arrestin protein
Another complexity in TXNIP biology 
is that it belongs to a class of proteins 
termed the α-arrestins. The function of 
α-arrestins is not well known, but it is 
clear that they participate in multiple 
protein interactions (16). The function of 
TXNIP as an arrestin is best exemplified 
by recent data demonstrating that the 
TXNIP-TRX1/2 complex is itself a sig-
naling mediator (14, 17). With regard to 
this point, a protein-protein interactome 
analysis performed by Yoshioka et al. 
revealed two networks of TXNIP-interact-
ing proteins that are candidates for future 
exploration of the arrestin role of TXNIP, 
which may or may not be related to its 
function in the mitochondria (4). The 
first network of TXNIP-interacting pro-
teins identified by the authors involved 
retinoid X receptor–a (RXRA) and its tar-
get, PPARg coactivator 1–a (PGC1a). The 
second network involved p38 MAPK and 

PGC1b. It is likely that TXNIP, by inter-
acting with proteins in these networks, 
regulates multiple cellular responses. 
Importantly, several of these proteins are 
regulators of mitochondrial metabolism, 
mitochondrial biogenesis, and cell metab-
olism (especially in adipocytes). It is not 
unexpected that TXNIP would be able to 
interact with a large network of proteins, 
since it contains several SH3 and PPxY 
motifs that can facilitate protein-protein 
interactions.

Summary
There is increasing appreciation of the 
importance of TXNIP in the cardiovascular 
system, since it has the ability to integrate 
signals related to changes in redox state, 
inflammation, metabolism, and biome-
chanical forces (2, 3, 18–20). Furthermore, 
because TXNIP expression is highly regu-
lated by multiple stimuli and has a very 
short half-life, it should be an easy target for 
drugs that limit its expression. Alternative-
ly, drugs that prevent its interaction with 
key proteins, such as TRX1, TRX2, PDH, 
and nuclear transcription factors, should 
have powerful effects in a variety of diseases. 
The work by Yoshioka et al. (4) provides a 
further rationale to focus on TXNIP as a 
therapeutic target for I-R injury.
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