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Introduction
Nascent membrane or secretory proteins are synthesized and fold-
ed in the endoplasmic reticulum (ER), which is prone to misfolding. 
Such misfolding may have pathogenic consequences if not cleared 
effectively (1-5). The suppressor of lin-12-like–HMG-CoA reduc-
tase degradation 1 (SEL1L-HRD1) complex represents one of the 
most conserved quality-control mechanisms in the cell, known as 
ER-associated degradation (ERAD) (6–8). In SEL1L-HRD1 ERAD, 
misfolded proteins are recognized and recruited to the SEL1L-
HRD1 protein complex via ER chaperones such as osterosarcoma 
amplified 9 (OS9) and ER lectin 1 (ERLEC1, also known as XTP3B) 
(9–14) followed by retrotranslocation and polyubiquitination by the 
E3 ligase HRD1 (12, 15, 16) and proteasome degradation in the cyto-

sol (17, 18). In this complex, SEL1L is an obligatory cofactor for the 
E3 ligase HRD1 (19, 20), not only controlling the protein stability 
of HRD1 (6, 19, 20), but functioning as a scaffold for other ERAD 
components such as OS9, ERLEC1, and degradation in ER (DER-
LIN) proteins (10, 19, 21–27). In yeast, SEL1L homolog Hrd3p may 
regulate Hrd1p autoubiquitination and self-degradation (28, 29).

Global or acute deletion of Sel1L or Hrd1 in germline and adult 
mice causes embryonic or premature lethality, respectively (20, 
30–32), pointing to the requirement of SEL1L-HRD1 ERAD func-
tion at both embryonic developmental and adult stages. Subse-
quent studies using cell type–specific gene KO mouse models have 
established its vital importance in many physiological processes, 
including food intake, water balance, thermogenesis, energy 
homeostasis, gut homeostasis, β cell identity/function, immune 
cell development/function, and hematopoietic cell quiescence 
(2, 3, 5, 33–51). Although these advances in mouse models have 
provided critical insights into the physiological importance of this 
complex, its relevance in humans remains unknown, as no disease 
variant has been identified in humans.

Using whole-exome sequencing (WES), here we report the iden-
tification of 3 autosomal recessive variants, SEL1L p.Gly585Asp, 
p.Met528Arg, and HRD1 p.Pro398Leu, in 6 children from 3 unre-
lated families with similar neurodevelopmental disorders — termed 
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Similarly, allele frequency of HRD1 p.Pro398Leu was low in the 
population and was predicted to be benign to damaging in various 
prediction databases (Table 1). SEL1L and HRD1 genes are located 
on chromosomes 14 and 11, respectively (Figure 1, G and H). Using 
Sanger sequencing, we confirmed that the 3 variants were found 
to be homozygous in all patients, but heterozygous in all parents 
(Figure 1, G and H). Three siblings for patient 1 were either hetero-
zygous or WT for the SEL1L allele (Figure 1, G and H).

Clinical features of the patients. Patient 1, a 14-year-old boy 
born to healthy consanguineous Saudi Arabian parents (with 3 
healthy siblings) showed hypotonia (poor sucking and floppiness) 
and microcephaly at 4 months of age. Three siblings, 2 WT and 1 
heterozygous at the SEL1L G585 locus, were healthy. The patient 
presented with global developmental delay (sat at 2 years of age, 
walked at 5, uttered mama/dada at 6, and is not at this writing toilet 
trained), moderate-severe intellectual disability (limited 2-word 
sentences and cannot count to 3, with an IQ of 35), and central 
hypotonia (with brisk deep tendon reflexes, wide-based gait with 
hands held on the side to support his balance) (Figure 2A, Table 1, 
Supplemental Table 2, and Supplemental Video 1). Physical exam-
ination performed at the age of 13 years revealed that he was under-
weight (–3.9 SD), and showed short stature (–3.9 SD), microceph-
aly (–4.2 SD), subtle facial dysmorphism (downslanting palpebral 
fissures and overbite), pectus excavatum (Figure 2B), a moderate 
degree of joint hyperlaxity, and shawl scrotum. The patient had a 
total of 3 seizures at 8 years of age with largely normal electroen-
cephalogram (EEG). His medical history was notable for frequent 
airway infections, although his workup did not suggest immuno-
deficiency. Other than hypotonia, neurological examination was 
largely normal.

Patients 2, 3, 4, and 5, 4 Moroccan siblings, 1 female (the 
proband, born 2005) and 3 males (born 2007, 2011 and 2017), 
born to healthy consanguineous parents (Figure 1B), presented 
since a few months of age with developmental delay, intellectu-
al disability, speech delay, short stature, seizures, and ataxic gait 
(progressive with age). The 2 older siblings (patients 2 and 3) had 
single seizure history, and the 2 younger siblings (patients 4 and 
5) showed microcephaly. The proband showed severe spastic and 
ataxic gait, falls, wide-based gait, pes cavus and equinus, mild dys-
tonia, paraparesis with pyramidal signs of lower limbs, with brisk, 
diffused tendon reflexes and clonus, pyramidal extension of the 
first toe, and bilateral positive Babinski sign (Figure 2C, Table 1, 
Supplemental Table 2, and Supplemental Video 2). The proband 
showed varus equus, scoliosis, and arched palate. The 4 patients 
also shared facial dysmorphism, including downslanting palpe-
bral fissures and overbite (Figure 2D), and were diagnosed with 
unilateral maculopathy, pallor of temporal poles, and severe cor-
neal dystrophy. MRI of the proband showed small cavities in the 
frontal periventricular area with nonspecific ventricular dilatation 
(Supplemental Figure 1). EEG of the proband showed generalized 
discharges of polyspikes and slow waves.

Patient 6, an Italian girl born to healthy nonconsanguineous 
parents in 2001, presented since her first months of age with 
hypotonia and severe drug-resistant seizures that were resolved 
by the age of 14 years (Figure 1C). She exhibited intellectual dis-
ability, speech delay, stereotypic movements, a clumsy gait (Fig-
ure 2E, Table 1, Supplemental Table 2, and Supplemental Video 3), 

ERAD-associated neurodevelopmental disorders with onset in 
infancy (ENDI). These variants are hypomorphic and attenuate 
ERAD function, likely via distinct mechanisms, including substrate 
recruitment, SEL1L-HRD1 complex formation, and HRD1 activity. 
Hence, this study establishes the pathophysiological importance of 
SEL1L-HRD1 ERAD in humans.

Results
Identification of biallelic SEL1L and HRD1 variants in humans. Six 
patients from 3 unrelated families in Saudi Arabia (patient 1), 
Morocco (patient 2–5), and Italy (patient 6) were suspected of 
inherited genetic disease during clinical visits (Figure 1, A–C). 
Patients 1, 2, 3, and 6 were subjected to WES of DNA samples 
(Figure 1, D–F). WES results were stringently filtered for nov-
el variants by excluding variants with low sequencing quality, 
in the noncoding region, with high frequency in the popula-
tion, or likely to be benign in silico (Figure 1, D–F). We failed to 
identify any known variants linked to inherited neurological 
or metabolic disorders, but rather noted 3 variants linked to the 
same protein complex/pathway, namely SEL1L-HRD1 ERAD: 
SEL1L p.Gly585Asp (NM_005065: exon 17: c.1754G>A) in the 
Saudi Arabian patient (patient 1), SEL1L p.Met528Arg (exon 16: 
c.1583T>G) in the Moroccan patients (patient 2 and 3), and HRD1 
p.Pro398Leu (NM_172230: exon 12: c.1193C>T) in the Italian 
patient (patient 6) (Figure 1, D–F, and Table 1). Indeed, homozy-
gous SEL1L p.Met528Arg was the only variant shared between 
patients 2 and 3, but not found in the healthy parents. Although 
additional variants including homozygous, heterozygous, com-
pound heterozygous, and de novo mutations were identified in 
the Saudi Arabian (patient 1) and Italian (patient 6) patients (Fig-
ure 1, D and F, and Supplemental Table 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/
JCI170054DS1), SEL1L p.Gly585Asp and HRD1 p.Pro398Leu 
variants were considered as potential candidates based on their 
biological relevance as reported in mice (2, 3, 5) and also accord-
ing to the American College of Medical Genetics (ACMG) and 
the Association for Molecular Pathology (AMP) 2015 guidelines 
for clinical interpretation of genetic variants (52). Indeed, nei-
ther of the SEL1L variants was found in public genetic variants 
databases, such as 1000gp3 (https://www.internationalgenome.
org/), ESP6500 (https://esp.gs.washington.edu/drupal/), ExAC 
(https://gnomad.broadinstitute.org/), and gnomAD (https://gno-
mad.broadinstitute.org/), and both variants were consistently 
predicted to be damaging using various prediction tools, such as 
Combined Annotation Dependent Depletion (CADD) (https://
cadd.gs.washington.edu/), PolyPhen2-HVAR (http://genetics.
bwh.harvard.edu/pph2/), Sorting Intolerant from Tolerant (SIFT) 
(https://sift.bii.a-star.edu.sg/), LIST-S2 (https://list-s2.msl.ubc.
ca/?session=838295C8507C38640C29677123B49248), Mende-
lian Clinically Applicable Pathogenicity (M-CAP) (http://bejera-
no.stanford.edu/mcap/), BayesDel addAF (https://fenglab.chpc.
utah.edu/BayesDel/BayesDel.html), DEOGEN2 (http://baby-
lone.3bio.ulb.ac.be/MutaFrame/), Functional Analysis through 
Hidden Markov Models (FATHMM-MKL) (http://fathmm.bio-
compute.org.uk/), MutationAssessor (http://mutationassessor.
org/r3/), MutationTaster (https://www.mutationtaster.org/), and 
PrimateAI (https://github.com/Illumina/PrimateAI) (Table 1). 
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cyst without other notable findings. When repeated at the age of 21 
years, an abnormal signal was detected in the globus pallidum and 
substantia nigra (not shown). Cardiac and abdomen ultrasounds 
were both normal. The patient has been on risperidone (Table 1) 
since the COVID-19 outbreak because of worsening of her behav-
ior with agitation and aggression.

and dysmorphic facial features (Figure 2F). Physical examination 
at 16 years of age revealed that she was underweight (37.5 kg body 
weight, <5th percentile, z score = –3.45), and showed short stature 
(height 139.5 cm, <5th percentile, z score = –3.9), and microceph-
aly (head circumference 51.8 cm, <5th percentile, z score = –2.6). 
Brain MRI performed in the first year of life revealed a cerebellar 

Figure 1. Genetic analysis pipeline and identification of bi-\allelic SEL1L and HRD1 variants in patients. (A–C) Family pedigrees for the kindreds from 
Saudi Arabia (A, patient 1, consanguineous), Morocco (B, patients 2–5, consanguineous), and Italy (C, patient 6), showing autosomal recessive inheritance. 
Shaded shapes, individuals with symptoms; arrows, probands. Ages indicated are as of 2022. (D–F) Genetic analysis pipeline of WES data for (D) patient 
1 (SEL1L p.G585D), (E) patients 2–3 (SEL1L p.M528R), and (F) patient 6 (HRD1 p.P398L). (G and H) Exonic and chromosomal location of the SEL1L (G) and 
HRD1 (H) variants as well as Sanger sequencing confirmation of the patients and healthy family members from parts A–C. Red arrowheads, nucleotide 
changes; K, heterozygosity.

https://doi.org/10.1172/JCI170054
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ataxia that progressed with age. Interestingly, hypotonia in the 2 
patients did not progress with age, and in fact the Italian patient 
was no longer hypotonic at the most recent evaluation in June 
2022. No notable abnormalities were observed in routine blood 
chemistry tests (glucose, electrolytes, blood urea nitrogen, creat-
inine, aspartate aminotransaminase, alanine aminotransaminase, 
and albumin) and complete blood counts in all 6 patients.

SEL1L and HRD1 variants are hypomorphic with impaired ERAD 
function. To investigate whether and how these disease variants 
affect SEL1L-HRD1 ERAD function, we generated knockin (KI) 
HEK293T cells carrying the biallelic variants using the CRISPR/
Cas9 system and verified by Sanger sequencing (Supplemental 
Figure 2, A–E). We then tested to determine whether these disease 
variants affect ERAD function by measuring protein stability and 
levels of known endogenous ERAD substrates such as inositol-re-
quiring enzyme 1α (IRE1α) (41), OS9 (53), and cluster of differen-
tiation 147 (CD147) (54) as well as the disease mutant of proargi-
nine vasopressin (proAVP) Gly57Ser (Gly-to-Ser at residue 57) 
(47). Indeed, endogenous substrates became accumulated in all 3 
KI HEK293T cell lines (Figure 3, A and B; see complete unedited 
blots in the supplemental material) due to protein stabilization, 
similar to that in SEL1L- or HRD1-KO HEK293T cells (Figure 3, C 
and D, and Supplemental Figure 3). Similarly, proAVP (Gly57Ser) 
accumulated in transfected KI cells, forming much more extensive 
high molecular weight (HMW) aggregates than those in WT cells 
(Figure 3, E and F).

A couple of points are worth noting here: first, although all vari-
ants caused substrate accumulation, the extent of substrate accu-
mulation differed among the variants, the highest being the SEL1L 
M528R variant and the lowest being either the SEL1L G585D or 
HRD1 P398L variant, which is consistent for both endogenous and 
model substrates (Figure 3, B and F). Second, the extent of sub-
strate accumulation and HMW aggregation in KI cells was modest 
compared with that in KO cells (Figure 3, B and F), pointing to the 
hypomorphic nature, rather than loss of function, of these vari-
ants. Taken together, these data suggest that 3 variants are hypo-
morphic with moderate to severe ERAD dysfunction.

Lack of an overt unfolded protein response in KI cells. Intriguing-
ly, we did not observe an overt unfolded protein response (UPR) 
in these KI cells, as demonstrated by the lack of IRE1α phosphory-
lation and X-box–binding protein 1 (XBP1) mRNA splicing as well 
as phosphorylation of protein kinase R-like ER kinase (PERK) and 
eukaryotic initiation factor-2α (eIF2α) (Supplemental Figure 4, 
A–D). ER chaperones, such as immunoglobulin heavy chain–bind-
ing protein (BiP) and protein disulfide isomerase (PDI), were accu-
mulated in KI HEK293T cells (Supplemental Figure 4, E and F). 
These data point to a cellular adaptive response in cells expressing 
these disease variants.

Sequence and structural analyses of SEL1L and HRD1 variants. 
We next asked how these variants affect ERAD function. We first 
performed in silico conservation and structural analyses. These 
variants affect conserved residues from yeast or drosophila to 
humans, with the exception of HRD1 Pro398, which is absent in 
yeast (Figure 4, A–C). Position-specific scoring matrix (PSSM) anal-
ysis (55) showed that all 3 variants replaced evolutionarily select-
ed aa and that the mutations may be detrimental to SEL1L and 
HRD1 function (Figure 4, D–F). The SEL1L variants, p.Met528Arg 

In summary, all 6 patients were symptomatic at infancy and 
presented with neurodevelopmental disorder, developmental 
delay, intellectual disability, and facial dysmorphisms (Table 1 and 
Supplemental Table 2). Four out of six patients had microcepha-
ly. Two patients showed hypotonia, with floppiness, unsteady and 
clumsy gait, and difficulty in walking, but no frank ataxia, while 
the other 4 patients from the Moroccan family exhibited severe 

Table 1. Genetic and clinical characteristics of patients with ENDI

Patient 1 Patients 2–5 Patient 6
Variant annotation

Variant SEL1L p.G585D SEL1L p.M528R HRD1 p. P398L
Chromosome 14 14 11
Position (GRch38) 81,486,333 81,487,439 65,130,292
nucleotide reference C A G
nucleotide alteration T C A
dbSNP153 rs370870880
Position (GRch37) 81,952,677 81,953,783 64,897,764
1000gp3_AF
ESP6500_AF 7.723×10–5

ExAC_AF 1.464×10–5

gnomAD_exomes_AF 9.454×10–6

CADD_phred 26.7 27.5 22.3
PolyPhen2-HVAR_pred Damaging Damaging Benign
SIFT_pred Damaging Benign Benign
LIST-S2_pred Damaging Damaging Damaging
M-CAP_pred Damaging Damaging Benign
BayesDel_addAF_pred Damaging Damaging Benign
DEOGEN2_pred Damaging Benign Benign
FATHMM-MKL_pred Damaging Damaging Damaging
MutationAssessor_pred Medium Medium Low
MutationTaster_pred Damaging Damaging Damaging
PrimateAI_pred 0.874478221 0.928470612 0.586824059

Clinical presentation
Age (as of 2023) 14 yr 6–18 yr 22 yr
Developmental delay + + +
Intellectual disability + + +
Short stature + + +
Underweight + + +
Microcephaly + + (2/4) +
Seizures + + (2/4) +
Hypotonia + – +
Progressive ataxia – + –
Early death – – –
Vomiting after eating – – –
Frequent infections + – –
Immune deficiency – – –
Dysmorphisms + + +
Brain MRI abnormality – + –
Eye symptoms + + +

Therapy (in chronological order first used)
GH Depakine Risperidone

IOL placement Vitamin D
l-Thyroxine

–, No significant findings; +, showed evidence; GH, growth hormone; IOL, 
intraocular lens implant.

https://doi.org/10.1172/JCI170054
https://www.jci.org/articles/view/170054#sd
https://www.jci.org/articles/view/170054#sd
https://www.jci.org/articles/view/170054#sd
https://www.jci.org/articles/view/170054#sd
https://www.jci.org/articles/view/170054#sd
https://www.jci.org/articles/view/170054#sd


The Journal of Clinical Investigation      R E S E A R C H  A R T I C L E

5J Clin Invest. 2024;134(2):e170054  https://doi.org/10.1172/JCI170054

SEL1L Met528 is predicted to be a part of the α-helix facing 
outward from the putative substrate binding groove and OS9 
(Figure 4I). Mutation of Met528 to Arg is expected to serious-
ly disrupt the α-helical structure and destabilize the protein. 
On the other hand, Gly585 is located on a loop between the 2 
helices in the putative substrate-binding groove (Figure 4J). 
While mutation of Gly585 to Asp is not predicted to disrupt 
the α-helical structure, it is located in the substrate-binding 
groove in close proximity to the substrate(s) and lectins (OS9 
and ERLEC1). Moreover, Pro398 of HRD1 is located in the pro-
line-rich region (~50 Pro in a stretch of 140 aa) of its cytosolic 
domain, C-terminal to the really interesting new gene–finger 

and p.Gly585Asp, affect residues in the Sel1-like repeat–middle 
(SLR-M) and the linker region between SLR-M and -C, respectively 
(Figure 4G). To visualize these variants in the ERAD complex, we 
performed AI-based AlphaFold2 prediction network analysis (56) 
to model the structure of the human SEL1L (107–723 aa)-HRD1 
(1–334 aa)-OS9 (33–655 aa)-DERLIN1 (1–213 aa) protein complex 
(Figure 4H). Structural modeling of the human SEL1L-HRD1 com-
plex showed a great similarity to the cryogenic electron microscopy 
(Cryo-EM) structure of the yeast Hrd1p-Hrd3p complex (PDB ID 
6VJZ) (12) (Supplemental Figure 5A). ConSurf conservation analy-
sis (57) of SEL1L confirmed that both Met528 and Gly585 residues 
were in highly conserved patches (Supplemental Figure 5B).

Figure 2. Clinical features of patients carrying SEL1L and HRD1 variants. (A, C, E) Photos of patient 1 (A), patient 2 (C), and patient 6 (E) showing clumsy 
and wide gait, with need of external supports in C and E. (B, D, and F) Photos of the patients showing dysmorphisms (red arrows). (B) Patient 1 at 13 years 
(left, middle) and 11 years (right) of age, showing overbite (left, middle), downslanting palpebral fissures, and pectus excavatum (right). (D) Patients 2–5 at 
ages of 17 (patient 2), 15 (patient 3), 11 (patient 4), and 5 years (patient 5), showing overbite (patients 2 and 3) and downslanting palpebral fissures (patient 
2–5). (F) Patient 6 at 16 years old, showing hypertelorism and flat nasal bridge (right).

https://doi.org/10.1172/JCI170054
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(RING-finger) domain (Figure 4K). This proline-rich region is 
disordered based on IUPred2 prediction (58) (Figure 4L), with 
no predictable structure.

SEL1L and HRD1 variants impair ERAD function via distinct 
mechanisms. We next explored how these variants cause ERAD 
defects using KI HEK293T cells. We first measured protein lev-
els of the SEL1L-HRD1 ERAD complex. Noticeably, SEL1LM528R 
KI HEK293T exhibited reduced SEL1L and HRD1 protein levels, 
by approximately 80% and 60%, respectively (Figure 5, A and 
B), uncoupled from their gene transcription (Figure 5, C and D). 

Indeed, both SEL1L and HRD1 proteins were unstable in SEL1LM528R 
KI cells (Figure 5, E and F). In contrast, SEL1LG585D exhibited a mod-
est reduction of SEL1L and HRD1 protein levels, by approximately 
20% to 30% (Figure 5, A and B), without changes in mRNA levels 
(Figure 5, C and D). SEL1LG585D had a subtle effect on the stability of 
SEL1L protein, but not HRD1 protein, in KI HEK293T cells (Figure 
5, E and F). This reduction in ERAD protein levels was unlikely to 
explain the ERAD defects associated with SEL1LG585D-expressing 
cells, as heterozygosity of SEL1L or HRD1 is sufficient for ERAD 
function (20, 34, 43, 44). On the other hand, HRD1P398L had no 

Figure 3. SEL1L and HRD1 variants are hypomorphic with impaired ERAD function toward misfolded endogenous and model substrates. (A and B) 
Western blot analysis of known ERAD endogenous substrates IRE1α, OS9, and CD147 in KI HEK293T cells, with quantitation shown in B. n = 4–16 (IRE1α); 
n = 4–12 (OS9); n = 3–12 (CD147). OS9.1 and OS9.2 were quantified together as OS9. SEL1L–/– and HRD1–/– HEK293T cells were included as controls. (C and D) 
Cycloheximide (CHX) chase analysis of known ERAD endogenous substrates IRE1α, OS9, and CD147 in KI HEK293T cells, with quantitation shown in D. n 
= 3–8 (IRE1α); n = 3–6 (OS9); n = 3–8 (CD147). SEL1L and HRD1 variants were analyzed separately with their own WT controls. Quantitation normalized to 
WT controls. Western blot data for ERAD KO samples shown in Supplemental Figure 3. (E and F) Reducing and nonreducing SDS-PAGE and Western blot 
analysis of HMW aggregates of proAVP(G57S) in KI HEK293T cells, with quantitation shown in F. n = 3–6 for group. n, individual cell samples. For A, C, and 
E, SEL1L and HRD1-KO HEK293T cells were included as controls and quantitated as ERAD KO. The replicates in Western blot are technical replicates. Data 
are represented as means ± SEM. Quantitation of the band intensities was compared using 1-way ANOVA with post hoc Tukey-Kramer test (B and F) or 
2-way ANOVA followed by multiple comparisons test (D). For B, comparisons between different letters (a–d) represents P < 0.05. *P < 0.05; **P < 0.01; 
***P < 0.001; ****P < 0.0001.
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effect on either protein levels or stability of SEL1L and HRD1 (Fig-
ure 5, A, B, E, and F). Hence, the SEL1LM528R variant causes ERAD 
dysfunction by reducing protein stability and levels of the SEL1L-
HRD1 complex, but not SEL1LG585D and HRD1P398L.

Given the location of SEL1L G585 residue, we next asked 
whether SEL1LG585D affects substrate recruitment. During ERAD, 
substrates are recruited by lectins such as OS9 and ERLEC1 to the 
SEL1L-HRD1 complex, which also includes ubiquitin-conjugating 

Figure 4. Sequence and structural analyses of SEL1L and HRD1 variants. (A–C) The aa sequence alignment of SEL1L (A and B) and HRD1 (C) showing the 
conservation of residues across species. (D–F) PSSM scores for aa position in SEL1L (D and E) and HRD1 proteins (F), with WT in green and variants in red. 
(G–K) Schematic diagrams of human SEL1L (G) and HRD1 (K) with the location of the variants indicated. SP, signal peptide; FNII, fibronectin type II domain; 
SLR-N/M/C, Sel1-like repeats at N-terminal, middle-, and C-terminal; TM, transmembrane; CYTO, cytosol; RING, RING domain; Pro-rich, Proline-rich 
domain. (H–J) Structural prediction of human SEL1L/OS9/HRD1/DERLIN ERAD complex using AlphaFold2 with close-up views of SEL1L-M528 (blue) and 
G585 (green) areas shown in I and J. Red (dotted) line marks the putative substrate binding groove. (L) Comparison of disordered region of HRD1 across 
species, highlighting the disordered nature of the proline-rich domain.
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Upon transfection in HRD1–/– HEK293T cells, P398L mutation 
attenuated HRD1 ubiquitination compared with those in WT 
cells (lanes 3 and 9 versus 2 and 8, Figure 7, E and F). The effect 
of P398L on HRD1 ubiquitination was similar to that of HRD1 
C2A mutation (lanes 4 and 10), a mutation in the RING domain 
known to abolish HRD1 E3 activity (8). Interestingly, mutation 
of the neighboring HRD1 Pro to Leu (P397L or P396L) had a 
much milder effect on HRD1 ubiquitination (lanes 5–6 and 
11–12, Figure 7, E and F). MG132 treatment enhanced HRD1 
ubiquitination in all samples (lanes 8–12 versus 2–6, Figure 7, 
E and F), suggesting that HRD1 ubiquitination may contribute to 
its turnover. These data suggest that HRD1 P398L affects HRD1 
ubiquitination, which may contribute to its dysfunction. Tak-
ing these data together, we conclude that these 3 variants cause 
ERAD dysfunction at distinct steps of ERAD, including substrate 
recruitment (SEL1LG585D), SEL1L-HRD1 protein stability and 
complex formation (SEL1LM528R), and HRD1 activity (HRD1P398L).

Discussion
This study reports 3 variants in SEL1L and HRD1 genes in 6 
patients from 3 unrelated families. These patients manifest 
similar clinical features, including developmental delay, micro-
cephaly, intellectual disability, facial dysmorphism, hypoto-
nia, and ataxia. Using KI HEK293T cells expressing individu-
al variants, we further show that these variants impair ERAD 
function at distinct steps of ERAD, including substrate recruit-
ment, SEL1L-HRD1 protein stability and complex formation, 
and HRD1 activity (Figure 8). We speculate that the phenotypic 
variations among these patients may reflect different levels of 
ERAD dysfunction associated with the variants and/or less like-
ly, possible effects of other non-ERAD variants.

E2 enzyme J1 (UBE2J1) and DERLIN proteins (18). To circumvent 
the confounding issue of reduced SEL1L and HRD1 protein levels 
in SEL1L KI cells, we used an overexpression system in SEL1L–/– 
HEK293T cells. Surprisingly, the SEL1LG585D variant significantly 
reduced its interactions with 2 lectin proteins (ERLEC1 and OS9), 
by approximately 70% to 80%, and with HRD1 by approximate-
ly 50% compared with that of WT SEL1L (Figure 6, A and B). In 
contrast, SEL1L interaction with UBE2J1 and DERLIN2 was not 
affected in SEL1LG585D-expressing cells (Figure 6, A and B). In 
contrast, SEL1LM528R did not affect the interaction between SEL1L 
and HRD1 or other ERAD components in transfected SEL1L–/– 
HEK293T cells (Figure 6, A and B). Hence, unlike SEL1LM528R, the 
SEL1LG585D variant impairs ERAD function by attenuating sub-
strate recruitment. This conclusion is in line with the prediction 
that SEL1L G585 faces the substrate-binding groove and is in close 
proximity to OS9 (Figure 4J).

In HRD1P398L KI HEK293T cells, the interactions of HRD1 
with other ERAD components, such as SEL1L, UBE2J1, 
DER2, valosin-containing protein (p97/VCP), and family with 
sequence similarity 8 member A1 (FAM8A1), were compara-
ble to those in WT HEK293T cells (Figure 7, A and B). How-
ever, substrate ubiquitination was significantly attenuated 
in HRD1P398L KI HEK293T cells, similar to that in the other 2 
SEL1L variants (Figure 7, C and D), providing further support 
for ERAD dysfunction. Given that HRD1 P398L is close to 
the RING domain (Figure 4K), we next asked whether HRD1 
P398L may affect HRD1 activity by modulating its ubiquitina-
tion using denaturing immunoprecipitation (IP) followed by 
Western blot. For unknown reasons, we failed to detect ubiq-
uitination of endogenous HRD1 proteins in WT and KI cells 
even with the treatment of MG132 (Supplemental Figure 6). 

Figure 5. Reduced SEL1L-HRD1 protein level 
and stability for SEL1L M528R variant, not 
the other 2 variants. (A and B) Western blot 
analysis of SEL1L and HRD1 in KI HEK293T cells 
expressing indicated variants, with quantitation 
shown in B. n = 8–10 (WT); n = 4–6 (G585D); n = 
7–9 (M528R). (C and D) RT-PCR analysis of SEL1L 
and HRD1 transcript levels in KI HEK293T cells, 
with quantitation shown in D. n = 4–7 per group. 
L32, loading control. (E and F) Cycloheximide 
chase analysis of SEL1L and HRD1 in KI HEK293T 
cells, with quantitation shown in F. n = 10 (WT); 
n = 3–4 (G585D); n = 4–5 (M528R); n = 3–5 
(P398L). SEL1L and HRD1 variants were analyzed 
separately with their own WT controls. Quanti-
tation normalized to WT controls. n, individual 
cell samples. Data are represented as means 
± SEM. *P < 0.05; **P < 0.01; ****P < 0.0001, 
1-way ANOVA followed by Dunnett’s multi-
ple-comparisons test (B and D); 2-way ANOVA 
followed by multiple comparisons test (F).
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other variants identified in patient 6, membrane-span-
ning 4-domains, subfamily a, member 12 (MS4A12) and 
protein phosphatase 1 regulatory subunit 32 (PPP1R32), 
are associated with colon cancer (64, 65) and ciliary 
movements (66), respectively. Given the (patho-)phys-
iological importance of SEL1L-HRD1 ERAD (2, 3, 5, 67) 
and given that the M528R variant is the only variant 
shared among the affected siblings from the Moroccan 
family, we believe that SEL1L-HRD1 ERAD variants are 
most likely to be disease causing in these patients.

Comparing disease-variant KI HEK293T cells to 
ERAD KO HEK293T cells, our biochemical analyses 
showed that these variants attenuated ERAD function. 
Since all the parents and some healthy siblings were het-
erozygous for the variant, we propose that all these vari-
ants cause more than a 50% reduction in ERAD func-
tion. Further comparisons among the 3 variants showed 
that SEL1L M528R may be the most severe one. This may 
account for the differences in clinical features between 
patient 2 to 5 with the SEL1LM528R variant (ataxia and 
microcephaly) and the other 2 patients, 1 and 6, with the 
SEL1LG585D and HRD1P398L variants (hypotonia). While the 
underlying molecular mechanisms are distinct for these 
variants in causing ERAD dysfunction, they all invariably 
cause ERAD dysfunction, leading to the stabilization and 
accumulation of endogenous ERAD substrates. Hence, 
these studies suggest that there is a threshold require-
ment for SEL1L-HRD1 ERAD function essential for nor-
mal neuronal function in humans.

We reported that these human SEL1L-HRD1 variants compro-
mised ERAD via distinct mechanisms. Specifically, in HRD1 P398L 
KI HEK293T cells, HRD1 ERAD function was impaired. Following 
overexpression in HRD1-deficient HEK293T cells, we found that 
the HRD1 P398L variant impaired HRD1 ubiquitination. While this 
finding is potentially interesting, as it may reflect HRD1 autoubiquiti-
nation as reported by Baldridge et al. (28), we are aware that overex-
pression of HRD1 likely alters the stoichiometric ratios of the ERAD 
components that do not accurately reflect those of the endogenous 
HRD1 complex. The “ubiquitinated HRD1” result from (partial-
ly) unassembled and misfolded HRD1 that are targeted for prote-
asome-dependent degradation. Studies are underway to explore 
whether HRD1 P398L affects autoubiquitination of the RING domain 
specifically related to channel gating or other lysine residues.

In the accompanying paper (68), we reported an additional 
5 patients carrying another SEL1L variant (SEL1L p.Cys141Tyr) 
identified from a Slovakian Romani family. This group of patients 
exhibited not only similar neurological disorders, but severe 
agammaglobulinemia resulting from the lack of B cells. This dif-
ference in clinical manifestation is likely due to the fact that SEL1L 
p.Cys141Tyr is the most severe variant among the four. Moreover, 
a SEL1L mutation (p.Ser658Pro) was previously identified in Finn-
ish hounds with cerebellar ataxia (also known as cerebellar ataxia 
Finnish hound type [CAFH]) (69), further suggesting that SEL1L 
may play an important role in maintaining normal neurological 
function or neurodevelopment. These findings provide strong 
experimental support for the notion that hypomorphic SEL1L-
HRD1 variants are pathogenic in humans. With that said, how 

A few additional variants were identified from the Saudi Ara-
bian (patient 1) and Italian (patient 6) patients (Supplemental 
Table 1). Most of the heterozygous and compound heterozygous 
variants were predicted to be benign by the pLI score (the intol-
erance of the gene to loss of function) and variant effect predic-
tion tools (CADD, PolyPhen-2 HVAR, SIFT), except for the het-
erozygous Furry-like (FRY-like) transcription coactivator (FRYL) 
variant (FRLY c.7490C>G, p.T2497R) identified in patient 1; 
however, Fryl heterozygous mutant mice were found to be nor-
mal compared with WT littermates, while homozygous mutant 
mice showed lower birth rate and renal defects (hydronephro-
sis) if they survived (59), suggesting that the FRYL variant may 
not be disease relevant in patient 1. Similarly, although several 
additional homozygous variants were identified, the reported 
functions of these proteins are not biologically relevant to the 
symptoms observed in our patients, e.g., Ras-associated protein 
rab17 (RAB17), which encodes a GTPase to enable GDP-binding 
activity (60), von Willebrand factor A containing 5B2 domain 
(VWA5BA), which belongs to the family of von Willebrand fac-
tors crucial for primary platelet and collagen adhesion function 
(61), and Solute carrier family 25, member 53 (SLC25A53), which 
is predicted to be an integral component of the mitochondrial 
inner membrane (Alliance of Genome Resources, https://www.
alliancegenome.org/) with unknown function. Among them, 
although mutations of other RAB family proteins have been 
linked to neurological disorders (62), RAB17 is an epithelial cell–
specific GTPase (63) and is expressed at a very low level in the 
central nervous system (GTExPortal, gtexportal.org). Similarly, 2 

Figure 6. SEL1L G585D variant, but not M528R, impairs substrate recruitment. 
(A and B) IP of FLAG-agarose in SEL1L–/– HEK293T cells transfected with G585D or 
M528R SEL1L-FLAG to test their interactions with components of the ERAD complex, 
with quantitation shown in B. n = 3–4 per group. n, individual cell samples. Data are 
represented as means ± SEM. ***P < 0.001; ****P < 0.0001, 1-way ANOVA followed by 
Dunnett’s multiple-comparisons test (B).
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stress response, and RNA biology (71). Moreover, a number of vari-
ants in genes involved in protein glycosylation have been reported to 
cause congenital disorders of glycosylation (CDG), manifestations 
of which also largely include neurodevelopmental delay and variable 
facial dysmorphism (73–78) — clinical consequences similar to those 
of our ENDI patients described in this study. This similarity is not 
surprising, as glycosylation is intimately associated with ER protein 
folding, maturation, and degradation (79). However, CDG patients 
also exhibit multisystemic symptoms, including hypoglycemia and 
liver, skin, gastrointestinal, and coagulation abnormalities (75), 
which were not observed in ENDI patients. Hence, identifying Men-
delian disorders caused by mutations in core ERAD components is 
essential in delineating the importance of ERAD in humans.

ENDI is a rare neurodevelopmental disorder associated with 
SEL1L-HRD1 ERAD and characterized by infantile-onset develop-
mental delay, intellectual disability, microcephaly, facial dysmor-
phisms, hypotonia, and/or ataxia. Intellectual disability affects 
about 1% to 3% of the population (80, 81), while ataxia has an 

these variants are linked to neurological defects in these patients 
remains to be investigated and is of great interest going forward. 
Although this lacks substantial evidence in humans, we speculate 
that SEL1L-HRD1 ERAD variants cause disease via substrate-de-
pendent and cell-type–specific manners, as none is associated 
with an overt UPR. Other mechanisms, such as organellar dys-
function, may also contribute to this pathological process.

This study reports what we believe is the first set of human 
patients carrying variants in the core components of a key protein 
degradative machinery, providing key evidence for its pathophysi-
ological importance in humans. It is worth noting that several vari-
ants have been identified in p97/VCP, another key component of 
the ERAD machinery involved in protein retrotranslocation from 
the ER. However, unlike SEL1L-HRD1 ERAD variants, these p97/
VCP variants cause multisystem disorders (70–72). Differences in 
clinical features between these 2 sets of patients are likely due to the 
fact that, in addition to ERAD, p97/VCP is involved in a wide variety 
of other cellular functions, including genomic stability, translational 

Figure 7. HRD1 P398L variant impairs HRD1 ubiquitination. (A and B) IP of HRD1 in HRD1P398L KI HEK293T cells to test its interaction with components of 
the ERAD complex, with quantitation shown in B. n = 3 per group. (C and D) Denaturing IP of HA-agarose in KI HEK293T cells expressing indicated variants 
transfected with a model substrate proAVP (G57S)-HA to measure substrate ubiquitination, with quantitation shown in D. n = 3 per group. (E and F) Dena-
turing IP of FLAG-agarose in HRD1–/– HEK293T cells transfected with indicated HRD1 variants, with or without 10 μM MG132 for 2 hours, to measure HRD1 
ubiquitination, with quantitation shown in F. n = 3 per group. n, individual cell samples. Data are represented as means ± SEM. **P < 0.01; ***P < 0.001; 
****P < 0.0001, 2-tailed Student’s t test (B); 1-way ANOVA followed by Dunnett’s multiple-comparisons test (D and F).
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ataxic gait (progressive with age). Brain MRIs of patient 2 (Moroccan 
family proband), aged 14 years, showed small cavities in the frontal 
periventricular area with nonspecific ventricular dilatation on coronal 
T2, coronal FLAIR, and axial T2 weighted images and thin corpus cal-
losum with no anomalies of basal ganglia or at the infratentorial level 
of sagittal plane. Blood tests suggested vitamin D deficiency and an 
infection at the time of tests on 06/2022. Family history was notable 
for parents being first cousins. No similarly affected relatives were 
found in the family. The last doctor visit was in 06/2022.

The Italian girl (born in 11/2001) presented with intellectual dis-
ability, speech delay, hypotonia, severe drug-resistant seizures, ste-
reotypies, and dysmorphic features. The patient showed no autism 
spectrum disorder traits. The last doctor visit date was in June 2022.

CRISPR/Cas9-based KO and KI HEK293T cells. HEK293T cells, 
obtained from ATCC, were cultured at 37°C with 5% CO2 in DMEM 
with 10% fetal bovine serum (Fisher Scientific). To generate SEL1L- 
or HRD1-KO HEK293T cells, sgRNA oligonucleotides designed for 
human SEL1L (5′-GGCTGAACAGGGCTATGAAG-3′) and human 
HRD1 (5′-GGACAAAGGCCTGGATGTAC-3′) were inserted into 
lentiCRISPR, version 2 (Addgene, 52961). Cells grown in 10 cm petri 
dishes were transfected with indicated plasmids using 5 μl of 1 mg/
ml polyethylenimine (PEI) (MilliporeSigma) per 1 μg of plasmids for 
HEK293T cells. The cells were cultured 24 hours after transfection in 
medium containing 2 μg/ml puromycin for 24 hours and then in nor-
mal growth medium.

SEL1LM528R, SEL1LG585D, and HRD1P398L KI HEK293T cells were 
generated using the CRISPR/Cas9 Homology-Directed Repair (HDR) 
system (Integrated DNA Technologies [IDT]); 5 μL of 100 μM Alt-R 
crRNA (IDT) with gRNA sequence was mixed with 5 μL of 100 μM 
Alt-R tracrRNA (IDT) containing the Cas9 interacting sequence. To 
anneal the oligos, the duplex mixture was heated at 95°C for 5 min-
utes and then cooled at room temperature for 20 minutes, and 9 μL of 
the guide complex was incubated with 6 μL of the 62 μM Alt-R Cas9 
enzyme (IDT) at room temperature for 20 minutes; 5 μL of the ribonu-
cleoprotein (RNP) complex, together with 1.2 μL of the 100 μM HDR 
donor oligo (IDT) and 1.2 μL of the 100 μM Alt-R Cas9 electroporation 
enhancer (IDT), was added into the 100 μL HEK293T cell suspension 
(about 5 × 105 cells) in electroporation solution (Ingenio). The mixture 
was transferred into a 0.2 cm cuvette, and electroporation was per-
formed using Lonza Nucleofector IIb (Lonza). To prepare cell culture 
media, 3.4 μL pf 0.69 mM Alt-R HDR Enhancer V2 (IDT) was added 
to 2,000 μL DMEM with 10% fetal bovine serum (Fisher Scientific). 
After electroporation, cell suspension was added to the cell culture 
media, and the mixture was incubated in 4 wells of a 24-well plate 
(500 μL per well). The cells were cultured at 37°C with 5% CO2. After 
5 days of incubation, the genomic DNA of the cell culture was extract-
ed with 50 mM NaOH. DNA fragments covering the target sites were 
amplified by PCR using HotStart Taq 2× PCR Master Mix (ABclonal) 
and analyzed by Sanger Sequencing (Eurofins Genomics US) to esti-
mate the percentage of mutant allele in the cell pool. In parallel, cells 
were diluted into 8 cells per mL and cultured in 96-well plates (100 
μL per well) for single-cell isolation. After 10 days, 100 single-cell 
colonies were transferred into 24-well plates. The SEL1LM528 region of 
each colony was amplified by a 50 μL PCR reaction, and 25 μL of the 
PCR product was treated with endonuclease NsiI (NEB) in rCutSmart 
Buffer (NEB), incubated at 37°C overnight. PCR products that were 
resistant to NsiI digestion were further analyzed by Sanger sequenc-

estimated overall prevalence of 26 in 100,000 in children (82). 
Our data suggest that evaluating SEL1L-HRD1 ERAD has diag-
nostic values for those with intellectual disability, developmental 
delay, and ataxia. While it is currently rare, we expect that more 
SEL1L-HRD1 ERAD variants will surface as evidence grows for its 
importance in humans. Options for treating patients with ENDI 
are currently very limited, but this study provides a framework for 
our future effort to target this important ERAD complex.

Methods
Human subjects. Six patients from 3 families were identified and includ-
ed in the study. The patient cases were gathered through the web-based 
tool GeneMatcher (83) (https://genematcher.org/statistics/). The Sau-
di Arabian boy was born in 10/2009 to a gravida 2, para 1, abortion 
0 29-year-old healthy mother and a 29-year-old father following an 
uneventful full-term pregnancy and spontaneous vaginal delivery. He 
presented with global developmental delay, intellectual disability, and 
hypotonia. MRI at 4 months of age suggested nonspecific periventricu-
lar white matter signal. The patient was officially diagnosed with short 
stature at 5 years of age and has shown limited response to growth-hor-
mone therapy. The patient was diagnosed with cataract at the age of 
6 and was treated with lens extraction and intraocular lens implant 
placement. The patient was diagnosed with hypothyroidism and has 
been on 25 mcg of l-thyroxine because of elevated thyroid-stimulating 
hormone (TSH). Other than hypotonia, neurological examination was 
largely normal. The last doctor visit was in May 2022.

Four Moroccan siblings, 1 female (born in 06/2005) and 3 males 
(born in 12/2007, 02/2011, and 10/2017) displayed developmental 
delay, intellectual disability, speech delay, short stature, seizures, and 

Figure 8. Our model for disease-causing SEL1L-HRD1 hypomorphic variants 
in ENDI. Human ENDI variants identified in patients through WES are hypo-
morphic and cause a partial loss of function of SEL1L-HRD1 ERAD via distinct 
mechanisms such as SEL1L protein and ERAD complex stability (SEL1LM528R), 
substrate recruitment (SEL1LG585D), and HRD1 activity (HRD1P398L).
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Western blot and antibodies. Cells were harvested and snap-frozen 
in liquid nitrogen. The proteins were extracted by sonication in NP-40 
lysis buffer (50 mM Tris-HCl at pH 7.5, 150 mM NaCl, 1% NP-40, 1 
mM EDTA) with protease inhibitor (MilliporeSigma), DTT (Milli-
poreSigma, 1 mM), and phosphatase inhibitor cocktail (MilliporeSig-
ma). Lysates were incubated on ice for 30 minutes and centrifuged at 
16,000g for 10 minutes. Supernatants were collected and analyzed 
for protein concentration using the Bio-Rad Protein Assay Dye (Bio-
Rad); 20–50 μg of protein was denatured at 95°C for 5 minutes in 5× 
SDS sample buffer (250 mM Tris-HCl pH 6.8, 10% sodium dodecyl 
sulfate, 0.05% bromophenol blue, 50% glycerol, and 1.44 M β-mer-
captoethanol). Protein was separated using SDS-PAGE or Phos-tag 
gel (as described previously, refs. 84, 85), followed by electropho-
retic transfer to PVDF (Fisher Scientific) membrane. The blots were 
incubated in 2% BSA/TBST with primary antibodies overnight at 
4°C: anti-HSP90 (Santa Cruz Biotechnology Inc., sc-13119, 1:5,000), 
anti-SEL1L (home-made, ref. 33; 1:10,000), anti-HRD1 (Proteintech, 
13473-1, 1:2,000), anti-OS9 (Abcam, ab109510, 1:5,000), anti-CD147 
(Proteintech, 11989-1, 1:3,000), anti-IRE1α (Cell Signaling Technol-
ogy, 3294, 1:2,000), anti-ERLEC1 (Abcam, ab181166, 1:5,000), anti-
UBE2J1 (Santa Cruz Biotechnology Inc., sc-377002, 1:3,000), anti-
DER2 (gift from Chih-Chi Andrew Hu, Houston Methodist Hospital, 
Houston, Texas, USA, ref. 86, 1:1,000), anti-VCP (Proteintech, 10736-
1, 1:3000), anti-FAM8A1 (Proteintech, 24746-1, 1:3000), anti-FLAG 
(MilliporeSigma, F1804, 1:1,000), anti-HA (MilliporeSigma, H3663, 
1:5,000), anti-PERK (Cell Signaling Technology, 3192, 1:5000), 
anti-eIF2α (Cell Signaling Technology, 9722, 1:5000), anti–p-eIF2α 
(Cell Signaling Technology, 9721, 1:1,000), anti-GRP78 BiP (Abcam, 
ab21685, 1:5000), and anti-PDI (Enzo Life Sciences, ADI-SPA-890-D, 
1:5000). Membranes were washed with TBST and incubated with 
secondary antibodies, either HRP conjugated (Bio-Rad, 1:10,000), 
anti-rabbit IgG TrueBlot HRP (Rockland, 18-8816-33, 1:500), or anti-
mouse IgG TrueBlot-HRP (Rockland 18-8817-31, 1:500), at room 
temperature for 1 hour for ECL chemiluminescence detection system 
(Bio-Rad) development. Band intensity was determined using Image 
lab (Bio-Rad) software (verison 6.1).

IP. For SEL1L-FLAG and HRD1 IP, HEK293T cells transfected 
with the indicated plasmids or KI HEK293T cells were snap-frozen in 
liquid nitrogen and whole-cell lysate was prepared in the IP lysis buffer 
(150 mM NaCl, 0.2% Nonidet P-40 [NP40], 0.1% Triton X-100, 25 
mM Tris-HCl pH 7.5) at 4°C, supplemented with protease inhibitors, 
protein phosphatase inhibitors, and 10 mM N-ethylmaleimide. A total 
of approximately 5 mg protein lysates were incubated with 15 μl anti-
FLAG agarose (MilliporeSigma, A2220) or 2 μl anti-HRD1 antibody 
(Proteintech, 13473-1) overnight at 4°C with gentle rocking. HRD1 
IP lysates were incubated with 10 μl protein A agarose (Invitrogen, 
20333) at 4oC for 2 hours after incubation. Incubated agaroses were 
washed 3 times with the IP lysis buffer and eluted in the SDS sample 
buffer at 95oC for 5 minutes followed by SDS-PAGE and immunoblot.

Denaturing IP for ubiquitination assay. HEK293T cells were trans-
fected with proAVP(G57S)-HA plasmids for 24 hours and then treated 
with 10 μM MG132 for 2 hours. The cells were snap-frozen in liquid 
nitrogen, and whole-cell lysate was prepared in the NP-40 lysis buffer 
(50 mM Tris-HCl at pH7.5, 150 mM NaCl, 1% NP-40, 1 mM EDTA) 
with 1% SDS and 5 mM DTT, denatured at 95°C for 10 minutes, and 
centrifuged at 16,000g for 10 minutes. Subsequently, supernatants 
were diluted 1:10 with NP-40 lysis buffer and incubated with 15 μl 

ing. The SEL1LG585D and the HRD1P398L regions were amplified using a 
25 μL PCR reaction and sequenced. Cell colonies with homozygous 
SEL1LM528R, SEL1LG585D, or HRD1P398L alleles were transferred into a 
6-well plate for further experiments.

Sequences were as follows: crRNA (guide sequence): SEL1LM528R: 
5′-CTAGCTCAGATGCATGCCAG-3′, SEL1LG585D: 5′-TACCTCCTCCT-
GGCTGAACA-3′, HRD1P398L: 5′-CACAGCCTCTCCTGAGCTGG-3′;  
HDR donor oligo (mutation sites are underlined): SEL1LM528R: 
5′-AATTTAGCTTCTCAGGGAGGCCATATCTTGGCTTTCTATA-
ACCTAGCTCAGAGGCATGCCAGTGGCACCGGCGTGATGCGAT-
CATGTCACACTGCAGTGGAG-3′, SEL1LG585D: 5′-GGCGATTACAA
TGCTGCAGTGATCCAGTACCTCCTCCTGGCTGAACAGGACTA
TGAAGTGGCACAAAGCAATGCAGCCTTTATTCTTGATCAGAGT
AAGG-3′, HRD1P398L: 5′-TGGCCCCCCATGGGCCCCTTTCCACCT
GTCCCGCCTCCCCTCAGCTCAGGAGAGGCTGTGGCTCCTCCA
TCCACCAGTGCAGG-3′; amplification PCR primers: SEL1LM528R: F: 
5′-AATCTGTATCAGTGTGTTAGCTTGTATTA-3′, R: 5′-AGAC
TTTCCTGCTGGGCAA-3′; SEL1LG585D: F: 5′-AAACCTGTTGAC
TTCTAAAGAGTAAGTGAAAACTT-3′, R: 5′-AATGTCAAATC-
CATTTCTACAGTCAACTCG-3′; HRD1P398L: F: 5′-CAGTCAGTGT-
GACCAGTGCT-3′, R: 5′-CTCACCCCCAAGAAGAACCC-3′; and 
sequencing primers: SEL1LM528R: 5′-CTTACAGATGGCATTGGAGT-
CAAGAGA-3′, SEL1LG585D: 5′-CCCACCTCACACAGTTGTTTA-
AGAATGT-3′, HRD1P398L: 5′-CCTCCGTCTTCTCTCTGCAG-3′.

Plasmids. The following plasmids were used in the study (h 
denotes human genes; m denotes mouse genes): pcDNA3-h-
proAVP(G57S)-HA (described previously, ref. 47); mSel1L cDNA 
(cloned from mouse liver cDNA and inserted into the pcDNA3 to 
generate pcDNA3-mSEL1L[WT]-FLAG). Point mutations of SEL1L 
in this study were generated using site-directed mutagenesis. The 
SEL1L-FLAG mutants G585D and M528R were generated using 
the plasmid pcDNA3-mSEL1L(WT)-FLAG as the template. All plas-
mids were validated by DNA-Seq. The mutagenesis primers were as 
follows: mSEL1L-FLAG-F: 5′-CGCGGATCCACCATGCAGGTC-
CGCGTCAGGCTGTCG-3′, R: 5′-CGCTCTAGACTATTTATCAT-
CATCATCTTTATAATCTCCGCCCTGTGGTGGCTGCTGCTCT-
GG-3′. G585D-F: 5′-TGGCTGAGCAGGACTACGAGGTGGC-3′, R: 
5′-GCCACCTCGTAGTCCTGCTCAGCCA-3′. M528R-F: 5′-CCTC-
GCACAGAGGCACGCCAGCGGC-3′, and R: 5′-GCCGCTGGC-
GTGCCTCTGTGCGAGG-3′. hHRD1 cDNA was cloned from pcD-
NA3-hHRD1(WT)-Myc-His (a gift from Y. Ye, National Institute of 
Diabetes and Digestive and Kidney Disease, Bethesda, Maryland, USA) 
and inserted into the pcDNA3 to generate pcDNA3-hHRD1(WT)-FLAG. 
Point mutations of HRD1 in this study were also generated using site-
directed mutagenesis. The HRD1-FLAG mutants P398L, C2A(C291A/
C294A), P397L, and P396L were generated using the plasmid pcDNA3-
hHRD1(WT)-FLAG as the template. Sequences were as follows: hHRD1-
FLAG-F: 5′-GGCGGTACCATGTTCCGCACGGCAGTGATGATG-3′, 
R: 5′-GGCGGATCCTCATTTATCATCATCATCTTTATAATCTCCGC-
CGTGGGCAACAGGAGACTC-3′; P398L-F: 5′-GTCCCGCCTCCCCT-
CAGCTCAGGAGAG-3′, R: 5′-CTCTCCTGAGCTGAGGGGAGGCGG-
GAC-3′; P397L-F: 5′-CCTGTCCCGCCTCTCCCCAGCTCAGGAG-3′, 
R: 5′-CTCCTGAGCTGGGGAGAGGCGGGACAGG-3′; P396L-F: 
5′-CCACCTGTCCCGCTTCCCCCCAGCTC-3′, R: 5′-GAGCTGGGG-
GGAAGCGGGACAGGTGG-3′; C2A-F: 5′-ATGGACAATGTCGCCAT-
CATCGCCCGAGAAGAGATG-3′, R: 5′-CATCTCTTCTCGGgcGAT-
GATGgcGACATTGTCCAT-3′.
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anti-HA agarose (Thermo Fisher,26182) overnight at 4°C with gentle 
rocking. The incubated agaroses were washed 3 times with the NP-40 
lysis buffer and eluted in the SDS sample buffer at 95°C for 5 minutes, 
followed by SDS-PAGE and immunoblot.

Chemical treatment. Cells were treated with 50 μg/ml cyclohexim-
ide for the indicated times followed by Western blot analysis or treat-
ed with 10 μM MG132 followed by denaturing IP. WT HEK293 cells 
treated with 100 nM thapsigargin for 4 hours were included as positive 
controls for UPR.

Statistics. Statistics tests were performed using GraphPad Prism, 
version 8.0 (GraphPad Software). Unless indicated otherwise, values 
are represented as means ± SEM. All experiments were repeated at 
least 2 to 3 times and/or performed with multiple independent bio-
logical samples from which representative data are shown. All data 
sets passed normality and equal variance tests. Statistical differences 
between the groups were compared using unpaired 2-tailed Student’s 
t test for 2 groups or 1-way ANOVA or 2-way ANOVA for multiple 
groups. P < 0.05 was considered statistically significant.

The intensities of the Western blot bands between different sam-
ples in some experiments were also statistically compared using 1-way 
ANOVA with post hoc Tukey-Kramer test in the R environment. The 
input data were first examined for homoscedasticity using the Breus-
ch-Pagan test implemented in the ncvTest function in the R car pack-
age. In our experience, data that do not satisfy a constant variance usu-
ally display log-normal distribution. Therefore, the log-transformed 
data were used as input in those cases.
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