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It has long been known that fatty acids can either adversely or positively affect insulin signaling in skeletal muscle,
depending on chain length or saturation, and can therefore be primary drivers of systemic insulin sensitivity. However, the
detailed mechanisms linking fatty acids to insulin signaling in skeletal muscle have been elusive. In this issue of the JCI,
Ferrara et al. suggest a model whereby membrane lipid remodeling mediates skeletal muscle insulin sensitivity. The
authors demonstrate that membrane glycerophospholipid fatty acid remodeling by lysophosphatidylcholine
acyltransferase 3 (LPCAT3) in skeletal muscle from subjects with obesity was induced, suppressing insulin signaling and
glucose tolerance. Loss or gain of LPCAT3 function in mouse models showed that Lpcat3 was both required and
sufficient for high-fat diet–induced muscle insulin resistance. These results suggest that the physiochemical properties of
muscle cell membranes may drive insulin sensitivity and, therefore, systemic glucose intolerance.
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Glycerophospholipid 
remodeling in obesity and 
diabetes
At first pass, de novo membrane glycero-
phospholipid biosynthesis via the canon-
ical Kennedy pathway seems to make an 
imperfect lipid bilayer. In order to gener-
ate suitable membrane properties, includ-
ing an asymmetric phospholipid biolayer, 
membrane curvature, and appropriate flu-
idity, membranes require further remod-
eling. Membrane glycerophospholipid 
fatty acid chain remodeling occurs via 
the Land’s cycle (1), whereby a phospho-
lipase hydrolyzes a glycerophospholip-
id fatty acid that is then reesterified by a 
lysophospholipid acyltransferase (2). This 
process enables the cell to fine-tune its 
acyl chain diversity and adapt to environ-
mental conditions to affect the biophys-
ical properties of the cell, for example, 
incorporating important polyunsaturated 

fatty acids (PUFAs) into the membrane 
(Figure 1). One class of acyltransferases 
are the lysophosphatidylcholine acyl-
transferases, which influence the mem-
brane lipid composition associated with 
a variety of pathologies in diverse tissues, 
such as the intestine, liver, and brain (3, 
4). Lysophosphatidylcholine acyltransfer-
ase 3 (LPCAT3) is a relatively well-studied 
LPCAT family member that preferential-
ly inserts arachidonic acid into glycero-
phospholipids in membranes. The loss of 
Lpcat3 results in perinatal lethality and 
has been shown to maintain systemic lipid 
homeostasis by regulating lipid absorption 
in intestine as well as lipoprotein secretion 
and de novo lipogenesis in liver (5, 6).

Ferrara et al. used lipidomics to 
demonstrate increased lysophospholipid 
species in human-cultured myotubes from 
subjects with obesity as compared with 
lean controls (7). The myotubes in culture 

conditions retained their in vivo phenotype 
while avoiding exposure to confounding 
contaminating intramuscular adipocytes. 
The increase in lysophospholipid species 
suggests that obesogenic conditions influ-
enced membrane remodeling and gener-
ated imbalanced transacylation in skeletal 
muscle. The authors found that Lpcat3 was 
transcriptionally induced in myotubes and 
muscle biopsies from subjects with obesi-
ty. Indeed, the genetic or pharmacological 
inhibition of LPCAT3 increased muscle 
insulin sensitivity. Conversely, increasing 
LPCAT3 genetically in mouse models sup-
pressed insulin sensitivity. These data align 
with the notion that an obesogenic increase 
in skeletal muscle LPCAT3 suppresses glu-
cose uptake in humans. Consistent with the 
present study (7), membranes enriched in 
arachidonyl phosphatidylcholine were pre-
viously shown to inhibit AKT signaling (8), 
although Ferrara et al. argue that increased 
LPCAT3 specifically impairs insulin- 
mediated AKT signaling in muscle. These 
results link membrane glycerophospholip-
id dynamics to the development of diet- 
induced insulin resistance (Figure 1).

PUFA, ROS, and insulin 
signaling
Dietary intake of PUFA has been implicat-
ed in insulin sensitivity. Dietary sourced 
PUFA is particularly relevant to skele-
tal muscle, which synthesizes very little 
de novo fatty acid and relies largely on 
exogenous fatty acid uptake, not only for 
the generation of contractile energy, but 
also glycerolipid synthesis. In Ferrara et 
al., Lpcat3 expression clearly altered the 
membrane PUFA composition of cells, 
suggesting a possible mechanistic link 
among dietary PUFA intake, LPCAT3- 
dependent membrane remodeling, and 
insulin resistance (7).

Ferroptosis is a nonapoptotic cell 
death associated with iron accumulation 
and lipid peroxidation in which hyperox-
idation ultimately causes cell death. The 
loss of the arachidonic acid–preferring 
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It has long been known that fatty acids can either adversely or positively 
affect insulin signaling in skeletal muscle, depending on chain length 
or saturation, and can therefore be primary drivers of systemic insulin 
sensitivity. However, the detailed mechanisms linking fatty acids to 
insulin signaling in skeletal muscle have been elusive. In this issue 
of the JCI, Ferrara et al. suggest a model whereby membrane lipid 
remodeling mediates skeletal muscle insulin sensitivity. The authors 
demonstrate that membrane glycerophospholipid fatty acid remodeling 
by lysophosphatidylcholine acyltransferase 3 (LPCAT3) in skeletal 
muscle from subjects with obesity was induced, suppressing insulin 
signaling and glucose tolerance. Loss or gain of LPCAT3 function in mouse 
models showed that Lpcat3 was both required and sufficient for high-fat 
diet–induced muscle insulin resistance. These results suggest that the 
physiochemical properties of muscle cell membranes may drive insulin 
sensitivity and, therefore, systemic glucose intolerance.
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reesterification, it remains unclear what 
the driver of membrane remodeling is. In 
order for LPCAT3 to affect glycerophos-
pholipid fatty acid content, phospholipases 
must hydrolyze fatty acids to generate the 
LPCAT3 lysolipid substrate. How is this 
hydrolysis mediated? By what enzyme? 
And by what signal? Answering these 
questions will elucidate important mech-
anistic details. Could membrane rigidi-
ty, mediated by a Western high-fat diet 
high in saturated fatty acids activate the 
AdipoRs independently of their putative 
endocrine ligand in skeletal muscle, which 
uniquely depend on exogenous fatty acids? 
Prolonged dietary changes in membrane 
structure may have a primary physiochem-
ical effect, signaling fatty acid hydrolysis 
and reesterification. Perhaps this process 
is why some diets high in PUFA effective-
ly control glucose intolerance. LPCAT3 
presents an intriguing tractable experi-
mental handle for elucidating the role of 
tissue-specific membrane dynamics on 
systemic physiology.

Acknowledgments
MJW is supported by NIH grants 
R01DK120530 and R01DK116746.

Address correspondence to: Michael 
J. Wolfgang, Department of Biological 
Chemistry, Johns Hopkins University 
School of Medicine, 855 N. Wolfe St., 475 

It is tempting to speculate that membrane 
physiochemical properties alone could 
predominately drive defective insulin sig-
naling by changing signaling effectors’ 
affinity for membrane or altering glucose 
transporter trafficking (11).

One oft-cited insulin-sensitizing agent 
is the adipocyte-secreted hormone adi-
ponectin. The putative receptors for adi-
ponectin have been identified as AdipR1 
and AdipR2, which have become attrac-
tive drug targets in type II diabetes (12). 
Interestingly, in the evolutionary record, 
AdipoRs predate the appearance of adi-
ponectin or its paralogous C1QTNF fami-
ly members. Emerging evidence suggests 
that AdipoRs and their orthologues act 
as membrane fluidity sensors (13–15). In 
line with the idea that AdipoRs sense and 
alter membrane lipid composition, adi-
ponectin and C1QTNF family members 
have been shown to bind membrane lipids 
(16). These data suggest that some of the 
pleotropic observations of adiponectin and 
AdipoRs may be due to membrane lipid 
composition rather than strictly canonical 
hormone receptor interactions.

Conclusions
Ferrara et al. demonstrate that human 
obesity results in an imbalance of glycero-
phospholipid remodeling in skeletal mus-
cle associated with an increase in LPCAT3 
(7). Given that LPCAT3 drives membrane 

acyl–coenzyme A (acyl-CoA) synthe-
tase-4 determines ferroptosis sensitivity. 
Similarly, the loss of LPCAT3 makes cells 
resistant to ferroptosis (9, 10). LPCAT3 
deficiency likely limits oxidation-sensitive 
fatty acids at the cell membrane. It seems 
reasonable to suggest that an LPCAT3- 
dependent increase in membrane arachi-
donic acid content would make the muscle 
membranes more susceptible to lipid oxi-
dation, particularly in obesogenic and/or 
inflammatory conditions. This raises the 
question of whether antioxidants might 
improve glucose intolerance associated 
with obesogenic Lpcat3 expression.

Can membrane fluidity directly 
affect insulin signaling?
While it is clear that excess fatty acids 
can affect insulin signaling in muscle in 
vitro and in vivo, the detailed mecha-
nisms remain elusive. The loss of Lpcat3 
ultimately changes many structural and 
signaling properties of cells, making it dif-
ficult to define a strict cause-and-effect 
relationship. While disrupting membrane 
PUFA is likely the root of the issue, is it pos-
sible that membrane fluidity could directly 
affect insulin signaling efficacy? In cell 
culture models, the addition of saturated 
fatty acids, such as palmitate, can cause 
lipotoxicity and generate insulin resis-
tance, which can generally be alleviated 
by also including unsaturated fatty acids. 

Figure 1. Model of diet-induced lipid bilayer changes in skeletal muscle 
that result in insulin resistance. When incorporating lipids into the plasma 
membrane, LPCAT3, an enzyme involved with phospholipid transacylation, 
esterifies a fatty acid onto a lysophospholipid from an acyl-CoA donor. Fer-
rara et al. (7) showed that an imbalance of glycerophospholipid remodeling 
in skeletal muscle occurs with obesity. In people, skeletal muscle remod-
eling was associated with an increase in LPCAT3. Loss or gain of Lpcat3 in 
mouse models showed that Lpcat3 is required and sufficient for inducing 
muscle insulin resistance following a high-fat diet. Muscle cell membrane 
composition may drive insulin sensitivity and glucose intolerance by 
influencing oxidation and plasma membrane rigidity. LPCAT3-dependent 
changes in plasma membrane may increase susceptibility to lipid oxidation 
by increasing the quantity of oxidation-sensitive fatty acids. Moreover, 
membrane fluidity may directly affect insulin signaling efficacy by changing 
accessibility to insulin receptors or altering glucose transporter trafficking.
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